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Pore size distributions in iron oxide-chromium oxide, compressed Aerosil, zir- 
coma powder, and loosely packed and compressed chrysotile have been determined 
by nitrogen capillary condensation (corrected Kelvin equation) and mercury 
penetration. 

In all samples except zirconia, the pore-volume vs pore-radius distributions de- 
termined by mercury penetration showed no overlap with those found from nitrogen 
capillary condensation, mercury penetration yielding distributions located at a 39 
49% lower level of the pore radii. 

Following a discussion of the theoretical aspects and the experimental procedures 
and results, suggestions are advanced for explaining the discrepancies observed. 

Since the advent of automatic apparatus 
for determining pore size distributions from 
mercury penetration, the application of this 
method to the study of the pore structure 
of adsorbents and heterogeneous catalysts 
has increased sharply. A good description 
of the design of this equipment can be 
found in an article by Guyer, BShlen, and 
Guyer (1). Now that mercury porosimeters 
are available that can be operated at pres- 
sures up to 3000 atm, it has become possible 
to determine distributions within a broad 
range of pore sizes, viz., between 7.5 X 
lo5 A (at 0.1 atm pressure ) and 25 A (at 
3000 atm pressure). 

Compared with methods such as nitrogen 
capillary condensation, mercury poro- 
simetry offers several advantages, including 
high speed, large measuring range, and 
simple theoretical analysis of the results. 
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On the other hand, the method is destruc- 
tive, in the sense that in most cases only 
part of the mercury can be retracted from 
the pore system. Sometimes, however, the 
mercury can be removed by distillation. 

Earlier investigators, including Ritter 
and Erich (,2), Joyner, Barrett, and Skold 
(S), and Zwietering et al. (4-G), already 
wondered how far the experimental results 
agree with the information from nitrogen 
capillary condensation; in general a rea- 
sonable agreement is reported. This ques- 
tion has become of interest again for three 
reasons: 

Whereas previously the range accessible 
to both methods reached from 75 to 
500 A, new developments in nitrogen 
capillary condensation (7) and mercury 
porosimetry (see above) have shifted the 
limits to 20 and 1000 A, respectively. 
Whereas in earlier comparative research 
nitrogen capillary condensation was de- 
scribed with the classical Kelvin equa- 
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tion, the theoretical work by Broekhoff 
(7)) together with our own experimental 
arguments (Part II of this series (25)) 
have disclosed that, especially in the 
range of pore sizes below lOOOA, the 
discrepancy between the radii calculated 
with the classical Kelvin equation and 
the actual radii is rather large, i.e., lO- 
30%. This makes it necessary to recon- 
sider the agreement reported earlier. 
The question as to how far the two meth- 
ods overlap calls for a more differentiated 
approach. In these considerations atten- 
tion should be given to the size of the 
pore radius, the degree to which the pore 
model used in the analysis agrees with 
reality, and the amount of “interconnec- 
tivity” between the pores. 

In this publication it will be demon- 
strated that the overlap of the pore distri- 
bution curves calculated from nitrogen 
capillary condensation and mercury pene- 
tration is not always as good as was sup- 
posed previously. Furthermore, it will be 
shown that the applicability of mercury 
porosimetry in the range of pore radii 
below 50A is open to doubt, but at the 
same time it raises interesting theoretical 
questions. 

THEORY 

When mercury is forced into a porous 
solid (see Fig. 1)) energy is expended in 
creating an intruding mercury surface. The 
interfacial free energy change clF, for an 
infinitesimal reversible increase of surface 
area under isothermal conditions is given 
by 

@I = YL.S* d8L.s + YG,S * dSG,S 

+ ?'L,U' dSL,G, (1) 

where yL,s is the free surface energy per 
unit area of the mercury-solid interface, 
S,,, the surface area of solid in contact with 
mercury, ye,s the free surface energy per 
unit area of the gas-solid interface, iZ& the 
surface area of the gassolid interface, yL,G 
the free surface energy per unit area of 
the mercury in contact with the mercury 
vapor, and &+a the surface area of mercury 
in contact with its vapor. 

The energy dF, needed to force an in- 
finitesimal volume dV of mercury into the 
porous solid in the case of reversible iso- 
thermal penetration is given by 

dF, = P . dV, (2) 
where P is the pressure at which the intru- 
sion occurs. 

Neglecting the very small amount of 
free energy spent in compensating for the 
production of heat during the intrusion of 
mercury (the heat of compression of mer- 
cury, and the friction heat at the mercury- 
solid interface), we have 

Ol- 

dF1 = dFz, (3) 

+ YL,C. dSL,G. (4) 
f'. dV = YL,S* d&s -I- ~a,s. d8G.S 

During intrusion, the change in S,,8 and 
&,s is much greater than the change in 
SL,G corresponding to the change of the sur- 
face area of the mercury menisci; therefore, 
the last term in Eq. (4) may be neglected. 
Further, the Young-Laplace+DuprB law 
(7) states that 

YL,S - YG,S = -yYr,,a co5 8, (5) 
where B is the contact angle between the 
solid and the mercury. Since CX’,&~ = 
-d&,, combining Eqs. (4) and (5) gives 

P. dV = -dSLvs + 7L,a I cos e. (6) 

For pores of circular cross-section and 
Fro. 1. Schematic representation of the intrusion radius r, which are open at both ends or 

of mercury intO II porous solid. P is the intrusion closed at one end 
pressure, L representa liquid mercury, G mercury 
vapor, and S the solid porous material. dV/dSL,s = r/2. (7) 
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Upon substitution of Eq. (7), Eq. (6) 
changes into 

P = (-2yr.J3 * cos IT)/?. (8) 
This is the well-known Washburn relation, 
which was used for the first time by Ritter 
and Drake (8) for describing mercury 
penetration into porous substances and 
catalysts. 

Applied to a pore system resembling a 
collection of tubular pores with circular 
constraints, or a collection of pores of ink- 
bottle shape, mercury penetration is gov- 
erned by Eq. (8)) and yields the distribu- 
tion of the radii of the constraints, though 
the penetrated volumes are related to the 
volume of the pores or ink-bottles. Equa- 
tion (8) is quite generally applied in the 
analysis of mercury penetration data, not- 
withstanding that the model of cylindrical 
pores is often very unrealistic. 

For slit-shaped pores, or porous sub- 
stances with microfissures giving access to 
cavities, cW/~&,,~ = d/2, where d is the 
width of the slit or the fissure. In such 
cases, Eq. (6) transforms into 

P = (-2YLJ3 ’ cos B)/d. (9) 
Compression of powders often results in 

pore systems resembling a more or less dense 
packing of nearly spherical particles. Pene- 
tration and retraction of mercury into and 
from such packings was studied by Kruyer 
(9)) Frevel and Kressley (10)) and Mayer 
and Stowe (11, la). 

The work of Mayer and Stowe is 
straightforward and directly applicable. 
These investigators define the pressure re- 
quired for initial penetration (the “break- 
through pressure”) in terms of the porosity 
E of the spherical model and the contact 
angle 0 of the mercury, and present calcu- 
lated data relating to the c-range from 2.5 
to 50%, and to contact angles from 90” to 
180’ (see Table II in Mayer and Stowe’s 
paper, Ref. 11). The breakthrough pressure 
P of mercury in the access openings in a 
collection of nonporous uniform solid 
spheres is given by 

P = n.&‘lA) . l/r., (10) 

where rI is the radius of the spheres. Mayer 

and Stowe calculated the function L//A 
for all packings of spheres varying between 
the two extremes of three-dimensional close 
packing and three-dimensional cubic pack- 
ing (see Tables II and III in their paper, 
Ref. 11). From the measured breakthrough 
pressure P and the porosity 6, which may 
be determined, for instance, from the total 
amount of mercury intruded into the pack- 
ing, rg, the radius of the spheres, can be 
calculated. Otherwise, with P and rs being 
known, the porosity can be found. 

Kruyer (9) calculated the pressure- 
volume relationship for the early stage of 
mercury retraction from assemblies of uni- 
form spheres, varying in packing-density 
from the closest-packed structure to primi- 
tive cubic packing: his results are in good 
agreement with those of Mayer and Stowe 
(1.2). If, after complete filling of the cavi- 
ties with mercury, the pressure is decreased, 
the isolated mercury surfaces in the toroi- 
da1 voids in the packing will ultimately 
interfere, and at that moment, according 
to Kruyer, the retreating mercury will set 
free the whole pore-space. This critical re- 
traction pressure can be calculated from 
Table 2 in Kruyer’s publication for various 
types of packing. 

Little experimental information is avail- 
able in the literature about the mercury 
retraction branch. Sometimes equilibration 
during retraction takes a very long time 
(even days or weeks), and in most cases a 
large portion of the mercury is not re- 
tracted at all (11). From a thermodynamic 
point of view, however, the retraction 
should continue as long as the penetrated 
mercury is in contact with the mercury out- 
side the porous substance. For the most 
part, a portion of the mercury stays behind 
owing to rupturing of the mercury fila- 
ments in that part of the pore system where 
the constraints are narrowest, a phenome- 
non similar to that observed on cooling 
the mercury in the bulb of clinical 
thermometers. 

Quantitative evaluation of Eqs. (S-10) 
calls for an exact knowledge of the surface 
tension of mercury, and of the contact 
angles between mercury and other mate- 
rials. According to Young (14) the surface 
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TABLE 1 
CONTACT ANGLES OF MERCURY ON SEVERAL SOLID SURFACES ?LT ROOM TEMPERATURE 

(EXCEPT WHEN OTHERWISE STATED) 

Solid surface Method of det’ermination Contact, angle Reference 

GlSSS 

Glass 
Glass 

Glass 
Glass 
Steatite 
Calcite 
Pyrite 
Parrafin wax 

Cetyl alcohol 

Coconut charcoal 
“Polymer spheres” 
Coal leaflets 
Silicates (mica) 

Height-of-sessile-drop method 
Height-of-sessile-drop met,hod 
Advancing and receding con- 

tact angles (both on tilted 
solid surface, at 18°C) 

Capillary depression 
Height-of-sessile-drop method 

? 
? 
? 

Advancing and receding con- 
tact angles (both on tilted 
solid surface) 

Advancing and receding con- 
tact angles, at 18°C 

Capillary depression 
Breakthrough pressure 
Height-of-sessile-drop method 

? 

140” (II) 
135” (18) 

136. .5”-141” (19) 
127”-126.5” (19) 

140” cw 
139” (21) 
144.5” (17) 
145.5” (17) 
14Fj.7” (17) 

137”-149” (17) 
134”-149” (17) 

153” (%1) 

180” @Oo) 
123" UO) 
142” (21) 
126” em 

tension is 485 + 5 erg/cm2 at 20°C. This is 
in good accordance with a recent observa- 
tion by Roberts (15) who found 487 erg/ 
cm2 at 2CPC for very pure mercury. The 
temperature coefficient of the surface ten- 
sion of .mercury (dy/dT) is 0.21 erg/cm2 
deg, according to the same author. 

Contact angles between mercury and 
varioussolid surfaces can be found in (16), 
and in Gmelin’s “Handbuch der Anorgan- 
ische Chemie” (17). Some values are listed 
in Table 1; it is seen here that 6’ = 140”, 
the value used by most investigators, is a 
good mean, but also that large deviations 
may occur. If it is assumed that the angle 
of contact is 140” and the surface tension 
480 erg/cm*, Eq. (8) transforms to 

r = 75,000/P, (11) 

with r being expressed in A and P in kg/ 
cm2. Equation (11) is quite generally used 
in mercury’ porosimetry, and also in this 
study. 

Internal surface areas of porous solids 
can, according to Rootare (as), be calcu- 
lated from mercury penetration, inde- 
pendently .of the BET method. From Eq. 
(6) it follows that 

s L,S = - l/r . CO8 8 . cpm= P . dV, 
I 

(12) 

which, with y = 480 dyne/cm and $ = 
140”, rearranges into 

SL,S = 0.267 opm~’ I P . dV W/g>, 03) 

where P is in kg/cm2, and dV in cm3/g. In 
this way the total surface area of the 
mercury-covered part of the solid is found. 
According to Rootare, and also according 
to the foregoing theory, the method leads 
to erroneous results when applied to 
strongly constrained pore systems. 

In using Eq. (12) to calculate surface 
areas, the condition of reversible pore fill- 
ing, assumed in its derivation, should be 
borne in mind, especially if the ,mercury 
penetration/retraction cycle shows hystere- 
sis, which would be clear evidence for 
irreversibility. 

EXPERIMENTAL 

The experiments were carried out with a 
mercury porosimeter (trade mark Micro- 
meritics Inst. Co., type 905-l), operating 
in the pressure range O-3500 atm. Mercury 
was purified by single distillation. 
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Mercury penetration in a chrysotile sam- 
ple was duplicated by means of a Carlo 
Erba type 70 H porosimeter, operating in 
the range l-2000 atm. In this measurement, 
the mercury was highly purified by drop- 
ping it through a glass column filled with 
3 N nitric acid, followed by washing with 
distilled water and sulfur-free benzene, and 
drying; finally the mercury was distilled 
three times in an all-Pyrex apparatus. 

The results obtained with the two types 
of porosimeters and the two grades of mer- 
cury agreed extremely closely, showing 
that the purity of the mercury used 
throughout this work was quite adequate 
for our purpose. All measurements were 
corrected for mercury compressibility (16). 

Chrysotile, Mg, (OH) 4 * Si,05, the prop- 
erties and pore size distribution of which 
are described in Parts I and II (84, 26), 
was divided into two portions. The first, 
sample B 1, was a loosely packed powder, 
whereas sample B 2 consisted of granules, 
strongly compressed at, a pressure of 3500 
kg/cm2. 

The zirconia sample, ZrO*, obtained from 
Rijnten (as), was prepared by precipita- 
tion of Zr (OH), from a solution of ZrCl,, 
filtration, washing, drying at 12O”C, and 
calcination at, 450°C. The BET surface 
area was 64 m”/g. 

Using a Philips 300 M apparatus, we 
took an electron micrograph of the same 
zirconia sample, embedded in methyl 
methacrylate and sectioned into coupes of 
less than 500 A thickness. The microscope 
was calibrated by means of a Rowland 
grid of 2160 lines/mm. 

RESULTS 

(a) Iron Oxide-Chromium Oxide Catalyst 

First, of all we reanalyzed a comparative 
study by Zwietering et al. on nitrogen 
capillary condensation and mercury pene- 
tration in an Fe,Ol-CrzOa sample (4, 6). 
These workers prepared the catalyst by 
coprecipitation of the mixed oxides from a 
Fe (NO,) ,Cr (NOs) 3 solution with Na2C03. 
The precipitate was washed and dried at 
llO”C, and pressed to pellets of 3 X 3 mm. 
Reduction was performed in a mixture of 1 
CO/5 H,O at 350°C during 4 hr. 

FIG. 2. Pore-size distribution in a F~0,-Cr~08 
catalyst. The derivative of the pore volume with 
respect t.o the pore radius is plotted aa a function 
of the pore radius. Curve 1: found from nitrogen 
capillary condensation with the classical Kelvin 
equation. Curve 2: found from mercury penetration 
with the Washburn equation (y = 480 dyne/cm, 
and B = 140”). Curve 3: found from nitrogen capil- 
lary condensation, with the Kelvin equation car- 
rected according to Broekhoff and de Boer. 

The pore-size distribution curves, cal- 
culated on the assumption that the pores 
in the sample are circular in cross-section, 
and applying the classical Kelvin equation 
for nitrogen capillary condensation, and 
the Washburn relation (Eq. 11) for mer- 
cury penetration, are given in Fig. 2. The 
distributions obtained with the two meth- 
ods show fair agreement (compare curves 
1 and 2). We recalculated the nitrogen re- 
sult by means of the Kelvin equation cor- 
rected according to Broekhoff (7) ; as is 
seen from Fig. 2 (compare curves 2 and 3) 
the agreement is then much worse. The top 
of the pore size distribution found from 
nitrogen capillary condensation lies at, a 
30% larger radius than the top of the dis- 
tribution found from mercury penetration. 

(b) Compressed Aerosil Powder 

The second sample analyzed by Zwie- 
tering et al. (6) was prepared by compress- 
ing Aerosil powder (Degussa, Hanau, 
Germany) at, a very high pressure. As re- 
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FIG. 3. Pore-size distribution in compressed 
Aerosil powder. Curve 1: found from nitrogen capil- 
lary condensation, with the classical Kelvin equa- 
tion. Curve 2: found from mercury penetration with 
the Washburn equation (y = 480 dyne/cm, and 
8 = 140”). Curve 3: found from nitrogen capillary 
condensation with the Kelvin equat,ion correct,ed 
accordingyto Broekhoff and de Boer. 

vealed by electron microscopic investiga- 
tion, the Aerosil consisted of nonporous, 
very smooth spherical particles of rather 
uniform size. The mean particle diameter 
is about 150A. 

In Fig. 3 the pore size analysis as found 
from nitrogen desorption and from mercury 
penetration is plotted. In the calculation 
of curves l-3 use is made of the circular 
cross section pore model, though we are 
sure that we are dealing here with a pack- 
ing of nearly spherical particles. We see 
from the figure that application of the cor- 
rected Kelvin equation yields a distribution 
whose top lies 28% higher than the top in 
the mercury penetration distribution curve. 
This disagreement between the two meth- 
ods is of the same order as found for the 
iron oxide-chromium oxide sample. 

Since the packing consists of nearly 
spherical particles, Mayer and Stowe’s re- 
lation (Eq. (10)) is applicable. From the 
texture data given by Zwietering et al. (5) 
the porosity of the pellets is found to be 
51.8%, which points to a primitive cubic 
packing of spheres. From Table II in 
Mayer and Stowe’s paper (11) it follows 
that the parameter L’/A in Eq. (10) is 3.80, 
assuming that the contact angle equals 
140”. From the breakthrough branch of 
mercury starting at P = 938 kg/cm2 and 
ending at 1500 kg/cm*, minimum and 
maximum values of the sphere radii of 125 
and 2OOA are found. The mean value 
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(162A) corresponds with a particle diam- 
eter of 324 A, which is about twice as high 
as the diameter observed in electron micros- 
copy, viz. 150 A. Hence, the choice of a 
more realistic pore model does not yield a 
better result. 

(c) Zirconia Powder 

Rijnten (26), in measuring the adsorp- 
tion and desorption isotherms of his sample, 
found a typical A-type hysteresis loop, 
which, according to Broekhoff (7)) should 
point to the presence of tubular pores of 
circular cross-section. However, our elec- 
tron micrograph (Fig. 4) does not support 
this view: the preparation consists of a col- 
lection of very loosely packed intercon- 
nected crystallites, of rather uniform size 
and cubic to spherical shape. Rijnten mea- 
sured a porosity of 51%. This value, which 
conforms to our EM observation, exceeds 
the theoretical figure for a primitive cubic 
packing of spheres (47.6%). 

In Fig. 5 we have plotted the pore-size 
distribution calculated from the adsorption 
and desorption branches of the hysteresis 
loop of Rijnten’s isotherm. Instead of the 
derivative of the cumulative pore volume 
with respect to the pore radius as a func- 
tion of the pore radius (as presented in the 
other figures in this paper), we plotted the 
cumulative surface area as a function of 
the pore radius, assuming that the pores 
are circular, and applying the corrected 
Kelvin Eq. (7). It is seen that close agree- 
ment exists between the distributions 
found from the adsorption and desorption 
branches of the nitrogen isotherm. 

Figure 6 represents the cumulative sur- 
face area as a function of the pore radius 
found by us from mercury penetration in 
the same sample. This curve agrees well 
with the results from the nitrogen method 
in Fig. 5. 

We conclude that, notwithstanding the 
use of a wrong pore model in both methods 
(open circular pores), the agreement is very 
good in this case. This might be due to the 
fact that we are dealing here with a very 
loosely packed system in which the dimen- 
sions of the entrances of the cavities are 
practically equal to the dimensions of the 
cavities themselves. 
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FIG. 4. Electron micrograph of xirconia powder, ZrO?. 
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from Nitrogen capillary 
condonsat Ion 

tron microscopy and nitrogen capillary 
condensation. These curves have been taken 
from the figures in Parts I and II (24, 65), 

and are compared with those from mercury 
penetration plotted in the same figures. 

Bco 400 200 80 60 40 20 

r(8) - 

FIG. 5. The cumulative surface area of zirconia, as 
a function of the pore radius, calculated by applying 
the corrected Kelvin equation to the circular pore 
model. Open circles, starting from the desorption 
branch; open triangles, starting from the adsorp- 
ldon branch. 

(d) Chrysotile 

Figures 7 and 8 show the pore size dis- 
tributions determined in chrysotile powder 
and compressed chrysotile powder by elec- 

-------BET surface area 

20 
-1 

1000 600 400 200 80 60 40 20 

r(a)- 

FIQ. 6. Cumulative surface area of zirconia as a 
function of the pore radius, found from mercury 
porosimetry (circular pore model). 

We shall first discuss the right-hand dis- 
tribution peaks reflecting the distribution 
of cavities in between the hollow chrysotile 
needles. We see from Figs. 7 and 8 that the 
pore distributions calculated on the basis 
of the nitrogen and the mercury methods do 
not coincide, the mercury method giving 
40% lower values for the peak radius of 
the distributions. Hence, just as found for 
iron oxide-chromium oxide and Aerosil, 
mercury porosimetry gives values for the 
radii which are much too low. It should be 
noted, however, that in both calculations 
the wrong pore model has been used, seeing 
that we are dealing with a packing of 
needles. 

From Figs. 7 and 8 it can further be 
seen that the left-hand distribution peaks, 
corresponding to mercury penetration into 
the hollow chrysotile needles appear at 
radii one-third smaller than those found 
from EM and the nitrogen method. This is 
an unexpected feature since analysis of 
mercury penetration by means of the 
Washburn relation is fully justified now, 
for we are sure from EM observations (24) 
that we are dealing with perfectly cylindri- 
cal pores open at both ends. This point 
will be discussed in the next section. 

Finally we remark that all pore size dis- 
tributions found from nitrogen capillary 
condensation and discussed in this section, 
were calculated by means of the Barrett- 
Joyner-Halenda method (27) ; hence cor- 
rections are made for the thickness t of the 
adsorbed film. 

DISCUSSION 

In four out, of five cases reported in this 
article where the pore size came in the 
range between 60 and 150A, the pore-size 
distribution calculated from mercury pene- 
tration does not coincide with the distribu- 
tion found from nitrogen capillary con- 
densation ; in all these cases the radii 
determined by means of the mercury 
method are 30-40s too small. The pore 
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FIQ. 7. Pore-size distribution in loosely packed chrysotile powder, sample B 1. The nitrogen isotherm WM 
analyzed with the corrected Kelvin equation (desorption branch). The mercury penetration was analyzed 
with the Washburn relation. The derivative of the pore volume per unit mass towards the pore radius is 
shown aa a function of the pore radius. 

model used in the two analyses strongly 
deviated from reality, and this might be 
the cause of the discrepancies observed. 
However, in the case of compressed Aerosil, 
application of Mayer and Stowe’s relation 
to a packing of spherical particles (which 
comes much closer to reality) still did not 
yield a better result. 

The large discrepancy between the values 
from mercury penetration into the hollow 
chrysotile needles and the results of the 
other methods is not directly intelligible, 
seeing that we are dealing here with per- 
fectly cylindrical pores. Moreover the re- 

suit of the nitrogen method is in accordance 
with the EM observation (&5), so that 
great certainty exists as to the real value 
of the radii. We will now examine what 
factors may be responsible for the non- 
validity of the Washburn relation in this 
case. 

1. Contact Angle 

From the Young-Laplace relation (5) 
we have (as yo,s is very small) 

- C0s~--E2. 
- ‘yL.G 

04) 
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FIG. 8. Pore-size distribution in compressed granules of chryzotile, sample B 2. The analysis of the nitrogen 
isotherm (deeorption branch) was made with the corrected Kelvin equation. The mercury penetration was 
analyzed with the Washburn relation. The derivative of the pore volume per unit mass with respect to the 
pore radius is shown as a function of the pore radius. 

Hence, with 0 = NO”, yL,8 II Y~,~, which A contact angle of 126”, as experimen- 
would mean that the chrysotile wall has no tally established for mercury on silicates 
influence on the mercury surface tension, like mica (see Table 1)) would be much 
or, expressed in another way, that the heat more likely, although it must be pointed 
of adsorption of mercury is zero and out that, owing to the strong concavity of 
chrysotile is totally unwetted by the mer- the inner walls of the chrysotile needles (a 
cury. Introduction of 8 = 180” into the radius of curvature of the order of 40A), 
Washburn relation would bring our results the heat of adsorption of mercury will be 
into somewhat better, though not full, greater than on a flat surface, with the 
agreement with the EM and nitrogen re- consequence that the contact angle will be 
sults, but such a contact angle has never smaller still. Introduction of, for instance, 
been found for mercury on silicates and 0 = 120” into the Washburn equation shifts 
hence must be regarded as very unlikely. the top of the mercury distribution curves 
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in Figs. 7 and 8 to 16.3 A and, hence, 
causes an even larger discrepancy between 
the mercury results and the EM and nitro- 
gen figures. 

2. Surface Tension y 
In our research the surface tension was 

taken to be 480 dynes/cm, a value which is 
quite generally accepted and applied in 
mercury porosimetry. However, its validity 
is limited to a flat mercury surface. Once 
the mercury has penetrated into the 
chrysotile needles, its surface becomes very 
strongly bent, the radius of curvature being 
of the order of 40 A, and this strong bend- 
ing will influence the value of y. 

The theory regarding the influence which 
the surface curvature has on surface ten- 
sion is not very well developed. According 
to Gibbs (98) the theory loses its validity 
for radii with a curvature smaller than 
1008. Since the surface tension is five to 
ten times t,hat of the liquids considered in 
the Gibbs theory, one might expect that, 
applied to mercury, the thermodynamic ap- 
proach will become invalid already at cur- 
vatures far in excess of 100 A. 

Benson and Shuttleworth (29) used ele- 
mentary molecular arguments to show why 
the surface energy depends on the curva- 
ture, and made a rough estimate of this 
dependence; their treatment is appropriate 
to small nuclei for which the earlier treat- 
ments were not valid. They conclude that 
even for molecular clusters of thirteen 
molecules the surface energy will be less 
than 15% smaller than for a plane surface. 
However, their theory was set up for mole- 
cules showing van der Waals interaction 
only, and it is not at all sure that it is 
valid also for mercury clusters where strong 
chemical bonds exist between the atoms. 

If the discrepancy in our measurements 
is due to the influence which curvature has 
on the surface tension, we have to conclude 
that for a convex mercury surface with a 
radius of curvature of 40 A the surface 
tension is about 50% greater than for a 
flat surface. The discrepancy found between 
electron microscopic observation and the 
mercury intrusion analysis according to 
Mayer and Stowe in the case of Aerosil 

points to a surface tension for a concave 
mercury surface which is about 50% lower 
than for a flat surface. 

Such adjustments of the surface tension 
would bring our results into good agree- 
ment with the EM and nitrogen results. 

3. Start of Mercury Intrusion 

The very first moment mercury pene- 
trates into a circular tube of radius r, a 
hemispherical mercury meniscus is formed, 
the curvature of which is twice the curva- 
ture of the mercury in contact with the 
inner tube wall. Calculation of c&,~/& for 
the hemispherical mercury meniscus gives 

d&G p -2 cos 0 
dV =ZC= r ’ (15) 

which result is equivalent to the Washburn 
relation (8). It follows that formation of 
the meniscus proceeds at the same pressure 
as mercury intrusion itself and, hence, can- 
not be responsible for the higher intrusion 
pressure measured on the chrysotile 
needles. 

4. Constraints and Blocking 

Finally, the cause of the too high intru- 
sion pressure might be sought in the pres- 
ence of constraints, or in partial blocking 
of the pores in the needles. This, however, 
was not observed in the electron micro- 
graphs (see Fig. 1 in Ref. 24). 

In conclusion we may state that in prac- 
tice we have to reckon with the possibility 
of relatively large discrepancies’ between 
the results from mercury penetration and 
nitrogen capillary condensation. Lntroduc- 
tion of a more realistic pore model is neces- 
sary, but does not improve the agreement 
on dealing with very narrow capillaries. 
Looked at from the theoretical angle, it 
will be necessary to investigate in more 
detail how far the Washburn’ relation is 
applicable to narrow capillaries. One 
should bear in mind that in pores of, say, 
40 K radius no more than about 13 mer- 
cury atoms can be spread over the length 
of the radius, and this raises the question 
whether the thermodynamic theory and, 
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hence, the Washburn equation, are valid 
under these conditions (28). 

In the experimental field more research 
will need to be done with respect to systems 
whose pore shape and pore dimensions are 
known from electron microscopy. We our- 
selves have planned to undertake further 
investigations on samples of natural 
chrysotile having a slightly larger mean 
inner pore radius than the 
material. 
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